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見積り工数制約下におけるEPCプロジェクト入札価格
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A Revised Algorithm for Competitive Bidding Price Decision
under Limited Engineering Man-Hours in EPC Projects

Nobuaki ISHII∗1 , Yuichi TAKANO∗2 , and Masaaki MURAKI∗3

Abstract– To determine the bidding prices in Engineering-Procurement-Construction (EPC) projects,
where contract prices are fixed, the contractor needs to consider the accuracy of estimated project cost
under the limited engineering Man-Hours (MH) for cost estimation to attain maximum profit from or-
ders. In this paper, we develop an algorithm where, in order to attain maximum profit, bidding prices
are determined by allocating MH for cost estimation and adjusting bidding prices simultaneously in
consideration of the competitive bidding environments, and the cost estimation accuracy under the
constraint of the total MH and the deficit risk of each order. Through numerical examples delivered
from the algorithm, we show that the developed algorithm is effective for bidding price decision in
EPC projects.

Keywords– competitive bidding, cost estimation accuracy, deficit risk, Man-Hour allocation

1. Introduction

The importance of Engineering-Procurement-Construc-
tion (EPC) projects [1, 2] is widely recognized in practice.
For example, construction, civil engineering, process plant
engineering, and so on, are typical fields of EPC projects.
In EPC projects, a main contractor has principal responsi-
bility, referred to as single point responsibility, for project
cost, quality, and schedule under a fixed-price, which is de-
termined before the start of the project as a lump-sum con-
tract [2]. Thus, a reduced project cost and shorter schedule
are expected [1, 3].

In EPC projects, accordingly, it is necessary for any con-
tractor to determine the bidding price based on a precise
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estimation of its project cost. Cost estimation, however,
is a complex task of predicting the costs of projects to be
provided in the future based on the analysis of the client’s
requirements. Thus, experienced and skilled human re-
sources, represented as engineering Man-Hours (hereafter
referred to as MH), are required for accurate cost estima-
tion. Those resources are limited for any contractor; fur-
thermore, once the orders are successfully accepted, the
corresponding projects to be carried out will also need con-
siderable human resources. For these reasons, it is impor-
tant to realize appropriate allocation of MH for cost estima-
tion to each order for maximizing the total expected profit
under the constraint of the total MH. In addition, contrac-
tors should consider the possibility of realizing a loss, i.e.,
the deficit risk, due to cost estimation error. This is because
just a few deficit orders, which suffer an eventual loss due
to cost estimation error, would result in a significant reduc-
tion of realized profits when the number of accepted orders
is limited, as is the case with EPC contractors.

In this paper, we develop an algorithm where bidding
prices are determined, in order to attain maximum profit,
by allocating MH for cost estimation and adjusting bidding
prices simultaneously in consideration of the competitive
bidding environments, and the cost estimation accuracy un-

Oukan Vol.10, No.1 47



Ishii, N., Takano, Y., and Muraki, M.

der the constraint of the total MH and the deficit risk of each
order. We analyze the effectiveness of the revised algorithm
on the expected profit through numerical examples.

2. Related Work

Since Friedman [4] has developed the first bidding model
that decides the bidding price to maximize expected profit,
a variety of studies, such as bidding theory, bidding model
and auction design, have been conducted on competi-
tive bidding (see Ballesteros-Pŕez et al. [5], Fuerst [6],
Rothkopf and Harstad [7], for detailed references). For
instance, Ioannou and Leu [8] present a competitive bid-
ding model for the average-bid method, which avoids bid-
ding at unrealistically low prices. Hosny and Elhakeem [9]
developed a generalized approach to estimate an optimum
markup under various bid evaluation options. Ishii et al.
[10] developed an order acceptance strategy under limited
MH. In addition, Takano et al. [11] considered sequential
bidding models where the obtained contracts require the use
of restricted MH. However, in these studies, the allocation
of limited MH for cost estimation to each order, which af-
fects the expected profits from orders significantly, has not
been investigated.

In addition, little attention has been paid to the profit
volatility risk associated with cost estimation accuracy.
Since, in practice, the number of accepted orders is usu-
ally limited in EPC contractors, the realized total profit is
significantly affected by a few deficit orders. Accordingly,
the deficit order risk should be considered in the bidding
price decision in EPC projects.

Regarding cost estimation accuracy, various types of re-
search have been performed. Oberlender and Trost [12]
studied determinants of cost estimation accuracy and de-
veloped a system for predicting the accuracy. Wright and
Williams [13] studied the predictors of the completed con-
struction cost based on various bid characteristics. Bertisen
and Davis [14] analysed costs of 63 projects and evaluated
the accuracy of estimated costs statistically. Jørgensen et al.
[15] studied the relation between project size and cost esti-
mation accuracy. Uzzafer [16] proposed a contingency esti-
mation model considering the distribution of estimated cost
and the risk of software projects to estimate contingency re-
sources. In addition, Humphreys [17], Towler and Sinnott
[1] indicated relations among cost estimation methods, cost
estimation data, and their accuracy in the field of process
plant engineering projects. More importantly, AACE Inter-
national [18] suggested that the cost estimation accuracy is

positively correlated with the volume of MH for cost esti-
mation. However, these studies have paid little attention to
the effect of the cost estimation accuracy and the relevant
MH on the expected profits, and the deficit order risks in
EPC projects under competitive bidding.

Based on the above observations, Ishii et al. [19] de-
veloped a heuristic bidding price decision algorithm (here-
after referred to as the HBPD algorithm) in consideration
of the cost estimation accuracy in EPC projects under the
limited MH. At the first step, the algorithm allocates MH
for cost estimation to each order according to the ranking
of orders, determined by a heuristic method in advance, un-
der the constraints on the total MH for cost estimation. At
the second step, it adjusts the bidding prices, based on the
cost estimation accuracy determined by the allocated MH at
the first step, to improve the expected profit under the con-
straint of deficit order probability. The allocation of MH for
cost estimation affects the cost estimation accuracy of each
order and thus the expected profits from orders. Therefore
the HBPD algorithm, which specifies the ranking of orders
in advance to allocate MH for cost estimation to each order
without considering the effect on the expected profit ade-
quately, cannot determine bidding prices to attain the max-
imum profit from orders.

In this paper, we propose a revised algorithm that deter-
mines bidding prices without using the predetermined rank-
ing of orders that is used in the HBPD algorithm. Namely,
the algorithm allocates MH for cost estimation to each order
and adjusts bidding prices simultaneously, under the con-
straint of the total MH for cost estimation and the deficit
risk of each order, to attain the maximum profit from or-
ders.

3. Mathematical Models for Bidding Price De-
cision

3.1 Evaluation of Cost Estimation Accuracy

In cost engineering, cost estimation accuracy is usually
defined as the percentage of deviation from the actual cost
(Humphreys [17], Kerzner [20]). In this paper, we define
cost estimation accuracy as the percentage representation
of the coefficient of variation, such as 5% of the actual cost.
It is obtained by dividing the standard deviation of the esti-
mated cost by the actual cost. Namely, a lower deviation (
σ ) means higher estimation accuracy.

Since cost estimation requires a detailed analysis and de-
sign made by experienced engineers in EPC projects, it can
be seen that the volume of MH for cost estimation signifi-
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cantly affects the cost estimation accuracy. In fact, Kerzner
[20] shows the relations between project data and cost esti-
mation accuracy in the process plant project. For instance,
six kinds of data, such as process description, process flow
diagram, and so on, are required for +/-35% estimation ac-
curacy. Additionally, 34 kinds of data, such as mechanical
P&Is, equipment list, and so on, are required to attain +/-
5% estimation accuracy. Since any contractor can estimate
the volume of MH required for creating such data, it is pos-
sible to evaluate relations between the volume of MH and
the cost estimation accuracy. It is also clear that the increas-
ing rate of cost estimation accuracy decreases gradually ac-
cording to the increase of the volume of MH. Thus, in this
paper, as in Ishii and Muraki [21], we define the standard
deviation σ of the bidding price, which is affected by cost
estimation accuracy, as the function of the MH for cost es-
timation per order PMH by applying the logistic curve as
follows:

σ(PMH) = σmin ·σmax/{σmax +(σmin −σmax) · e−C·PMH}

(PMH > 0.0) , (1)

where σmin and σmax are the minimum and the maximum
value of the standard deviation, and C is a parameter of the
logistic curve, which defines the sensitivity of cost estima-
tion accuracy to the volume of MH. Namely, the larger C
requires the greater volume of MH to attain the target cost
estimation accuracy. In practice, the contractor could deter-
mine these parameters from past project records.

3.2 Evaluation of Bidding Price

We use the following mathematical models for evaluat-
ing the bidding price based on the HBPD algorithm. Note
that a list of notations used in mathematical models is
shown in Appendix.

We consider K contractors (k = 1,2, · · · ,K) and the bid-
ding for I orders (i = 1,2, · · · , I). Particularly, k = 1 repre-
sents one’s own company, and k ≥ 2 are those of its com-
petitors. In addition, we suppose that there are G levels of
cost estimation accuracy (g = 1,2, · · · ,G) for allocating the
MH for cost estimation to each order. Namely, when the
order is set to a higher accuracy level, a larger volume of
MH is assigned to its cost estimation.

Each contractor k sets a tentative bidding price of order i
based on standard project cost STCi, relative cost difference
RCi

k from STCi, and target profit rate tpri
k. Each contrac-

tor’s tentative bidding price TBPi
k for order i is determined

as follows:

TBPi
1 = STCRi

1 · (1+ tpri
1) · rpi

(i = 1,2, · · · , I) , (2)

TBPi
k = STCRi

k · (1+ tpri
k)

(i = 1,2, · · · , I; k = 2,3, · · · ,K) , (3)

STCRi
k = STCi · (1+RCi

k)

(i = 1,2, · · · , I;k = 1,2, · · · ,K) , (4)

where rpi is a risk parameter, and STCRi
k is the standard

project cost with the relative cost difference. Note that ten-
tative bidding price of one’s own company TBPi

1 can be ad-
justed by changing the value of risk parameter rpi. If there
is no difference in cost-competitiveness among contractors,
RCi

k is set to 0. STCi can be specified in reference to the pre-
liminary cost, which is calculated before deciding whether
to bid or not as shown in a competitive bidding process by
Ishii et al. [19].

Let pi
k(x

i
k, µ̄, σ̄) be the probability density function of the

bidding price xi
k of the contractor k for order i, and its aver-

age value and standard deviation are µ̄ and σ̄ , respectively.
Then the expected profit in one’s own company (k = 1) is
represented as the average excess of the bidding price xi

1

over STCRi
1. However, note that only when the bidding

price of one’s own company xi
1 is the lowest among those

of other contractors xi
k, (k = 2, · · · ,K), he can receive the

order i. When order i is set to the accuracy level g, the ex-
pected profit epi

g in one’s own company (k = 1) is expressed
by

epi
g =

∫ ∞

0
(xi

1 −STCRi
1) · pi

1(x
i
1,TBPi

1,σ
i
g,1)

·
K

∏
k=2

∫ ∞

xi
1

pi
k(x

i
k,TBPi

k,σ
i
k) dxi

k dxi
1

(i = 1,2, · · · , I;g = 1,2, · · · ,G) , (5)

where σ i
g,1 is the standard deviation of one’s own com-

pany’s bidding price and σ i
k is that of the competitor. The

value of σ i
g,1 decreases with a higher accuracy level g. Ad-

ditionally the expected order in one’s own company (k = 1)
is the average revenue represented as follows:∫ ∞

0
xi

1 · pi
1(x

i
1,TBPi

1,σ
i
g,1) ·

K

∏
k=2

∫ ∞

xi
1

pi
k(x

i
k,TBPi

k,σ
i
k)dxi

k dxi
1

(i = 1,2, · · · , I;g = 1,2, · · · ,G) . (6)

Moreover, we employ the expected shortfall relative to
STCRi

1, i.e., the expected deficit from order i, as a risk mea-
sure. This risk measure is also referred to as the lower
partial moment in the context of financial decision making
(see, e.g., Bawa and Lindenberg [22]). When order i is set
to the accuracy level g, the expected shortfall resulting from
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order i is calculated as follows:

dri
g =

∫ STCRi
1

0
(STCRi

1 − xi
1) · p1(xi

1,TBPi
1,σ

i
g,1)

·
K

∏
k=2

∫ ∞

xi
1

pk(xi
k,TBPi

k,σ
i
k)dxi

k dxi
1

(i = 1,2, · · · , I;g = 1,2, · · · ,G) . (7)

We refer to dri
g as the deficit risk in this paper.

4. A Revised Algorithm for Determining Bid-
ding Prices

By using the above mathematical models, we propose a
revised algorithm for determining bidding prices to attain
maximum profit as follows. This algorithm allocates MH
for cost estimation to each order and adjusts the bidding
prices by risk parameters simultaneously under the limited
MH and deficit risk constraint of each order.

Let ai
g be a 0-1 integer decision variable for setting each

order to a level of estimation accuracy (g = 1,2, · · · ,G). If
ai

g = 1, then order i is set to the accuracy level g. We de-
termine the optimal value of the risk parameter and MH
allocation for cost estimation by solving the following op-
timization problem with decision variables rpi and ai

g:

Maximize
I

∑
i=1

G

∑
g=1

ai
g · epi

g (8)

subject to
G

∑
g=1

ai
g ·dri

g ≤ rpf i (i = 1,2, · · · , I) , (9)

I

∑
i=1

G

∑
g=1

ai
g ·PMHi

g ≤ TMH , (10)

G

∑
g=1

ai
g = 1 (i = 1,2, · · · , I) , (11)

ai
g ∈ {0.1} (i = 1,2, · · · , I;g = 1,2, · · · ,G) , (12)

where PMHi
g is the volume of MH required for estimating

the cost of order i with accuracy level g, TMH is the total
MH for cost estimation, and rpf i is the upper limit of the
expected deficit from order i. It should be noted that the
relation σ i

g,1 = σ(PMH i
g) holds (see also Eq. (1)).

In the above optimization problem, the objective is to
maximize the total expected profit. Eq. (9) is the deficit
risk constraint on each order. Eq. (10) is the upper limit
constraint on the available MH for cost estimation. Eq. (11)
and (12) force each order to be set to one accuracy level.

The optimization problem (8)-(12) is a mixed integer
nonlinear program that is difficult to solve directly. Thus,
we take a simple decomposition approach to solve it.

Specifically, we first calculate the expected profits by op-
timizing the risk parameter of each order (i = 1,2, · · · , I) for
each accuracy level (g = 1,2, · · · ,G). Next we assign the
MH for cost estimation to each order based on the expected
profits. The solution procedure is described as follows:

Solution Procedure for the Optimization Problem (8)-(12)

Step1: Solve the following optimization problems:

oepi
g = max{epi

g | dri
g ≤ rpf i}

(i = 1,2, · · · , I; g = 1,2, · · · ,G) (13)

with a decision variable rpi.

Step2: Solve the following optimization problems:

max

{
I

∑
i=1

G

∑
g=1

ai
g ·oepi

g

∣∣∣∣∣ (10), (11), (12)

}
(14)

with decision variables ai
g

(i = 1,2, · · · , I;g = 1,2, · · · ,G) .

It is clear that if we obtain optimal solutions to the opti-
mization problems (13) and (14), the above solution proce-
dure provides an optimal solution to the optimization prob-
lem (8)-(12). We use a simple iterative algorithm to search
for a solution of rpi by gradually eliminating search space
at Step 1, and we use the basic solver included with Excel
2010 to solve optimization problem (14).

Let orpi and oai
g be the optimal value of risk parameter

rpi and the optimal assignment of the accuracy level ai
g,

respectively. Then the optimal volume of MH, PMHi
g(i), is

allocated to the order i to estimate its cost, where g(i) ∈
{g | oai

g = 1} is an optimal accuracy level for order i. After
completing the cost estimation, the estimated cost EST i is
obtained. Finally, the bidding price to attain the maximum
profit for order i is determined based on the estimated cost
as follows (see also Eq. (2)):

EST i · (1+ t pri
1) ·orpi . (15)

5. Numerical Examples

In this section, we show the following through the nu-
merical examples by using the revised algorithm explained
in the previous section: (1) effects of the cost estimation
accuracy and the available MH on the expected profit; (2)
significance of the MH allocation method for the cost es-
timation; (3) effectiveness of bidding price adjustment by
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risk parameter; (4) effect of the deficit risk constraint on
the expected profit; and (5) performance of the revised al-
gorithm compared to that of the HBPD algorithm.

5.1 Problem setting
5.1.1 Setting of cases

We use the cases shown in Table 1 for numerical ex-
amples. Risk parameter rpi is set to 1.0 for all orders in
Cases 0, 1, and 2; and it is optimally determined by solv-
ing the optimization problems (13) in Cases 3 and 4. It
is assumed in Case 0 that one’s own company can esti-
mate the costs of all orders without estimation error, i.e.,
σ i

g,1 = 0 (i = 1,2, · · · , I; g = 1,2, · · · ,G). Accordingly in
Case 0, the MH allocation, which affects the cost estima-
tion accuracy, does not make any difference. By contrast
in Cases 1 to 4, the cost estimation accuracy of one’s own
company σ i

g,1 is a function of the volume of MH, PMHi
g,

that is, σ i
g,1 = σ(PMHi

g) (see also Eq. (1)). We consider
four conditions of the total MH available for cost estima-
tion TMH, i.e., (A) 80, (B) 90, (C) 100, and (D) 110 thou-
sand man-hours ([M MH]). TMH is set so that the average
MH for cost estimation is approximately 1.5% to 2.0% of
STCi. In Cases 1 and 3, according to the total MH for cost
estimation TMH, the MH for cost estimation is allocated to
each order so that the cost estimation accuracy of every or-
der calculated based on Eq. (1) will be the same. Table 2
shows the cost estimation accuracy of all orders, which is
defined as a percentage of the standard project cost STCi,
of one’s own company in Cases 1 and 3. For instance in
Cases 1 and 3, the cost estimation accuracy for all orders
(i = 1,2, · · · , I) is equal to 8.45% of STCi when the total
MH for cost estimation TMH is 80 [M MH]. Meanwhile in
Cases 2 and 4, the MH for cost estimation is optimally al-
located to each order by solving the optimization problem
(14).

Table 1: Cases for numerical examples

(Equally allocated: MH is allocated to equalize the
cost estimation accuracy of all orders)

Case Risk parameter rpi MH allocation
Case 0 1.0 (No cost estimation error)
Case 1 1.0 Equally allocated
Case 2 1.0 Optimally allocated by Eq.

(14)
Case 3 Optimally deter-

mined by Eq. (13)
Equally allocated

Case 4 Optimally deter-
mined by Eq. (13)

Optimally allocated by Eq.
(14)

Table 2: Cost estimation accuracy of
all orders in Cases 1 and 3

Total MH for cost estimation 80 90 100 110
TMH [M MH]

Cost estimation accuracy [%] 8.45 7.80 7.23 6.75

5.1.2 Setting of parameters

In this paper, we assume a mid-size EPC contractor in the
chemical plant engineering business whose annual sales are
approximately one billion US dollars (1000 [MM$]), and
we consider 16 orders in a term in each case as shown in
Table 3. Namely, we suppose that one’s own company has
the capability to accept 20% of the orders.

We set the following parameters in all the cases: Relative
cost difference RCi

k = 0.0 (i = 1,2, · · · , I;k = 1,2, · · · ,K);
target profit rate tpri

k = 0.1 (i = 1,2, · · · , I;k = 1,2, · · · ,K);
and standard deviation of the bidding price σ i

k is set to 8%
of STCi for all competitors (i = 1,2, · · · , I;k = 2,3, · · · ,K).
We evaluate the result of the bidding on the basis of the
total expected profit in Section 5.2.1, 5.2.2, 5.2.3, and 5.2.5.
Accordingly, the upper limit of the expected deficit rpf i is
set to infinity in Section 5.2.1, 5.2.2, 5.2.3, and 5.2.5. The
effect of the deficit risk constraint is assessed in Section
5.2.4.

We suppose in Eqs. (5), (6), and (7) that the bidding
price xi

k follows lognormal distribution as in Bertisen and
Davis [14]. We set C to 0.25 ·100/STCi, and σmin and σmax

to 0.5% and 30% of STCi, respectively, in Eq. (1). These
parameters are determined so that the average of cost esti-
mation accuracy in Cases 1 and 3 are between 5% to 10%.
In addition, we set 11 levels of the cost estimation accu-
racy σ i

g,1 (g = 1,2, · · · ,11) to 5%, 6%, · · ·, 15% of STCi

(i = 1,2, · · · , I). Each order i is set to one accuracy level g,
where the volume of MH PMH i

g to be allocated to the order
i is determined based on Eq. (1) and σ i

g,1.

Table 3: Conditions of orders

Order id (i) 1 2 3 4 5 6 7 8 9
STCi [MM$] 100.0 200.0 300.0
# Bidders (K) 2 3 4 2 3 4 2 3 4

Order id (i) 10 11 12 13 14 15 16
STCi [MM$] 400.0 500.0 600.0
# Bidders (K) 2 3 4 3 4 3 4
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5.2 Results of numerical calculation

5.2.1 Effects of the cost estimation accuracy and the
available MH on the expected profit

Since the total MH for cost estimation is limited in prac-
tice, project costs are subject to unavoidable estimation er-
ror. Nevertheless, it is assumed in Case 0 that there is no
cost estimation error. As shown in Table 4, the total ex-
pected profit in Case 0 is significantly higher than those in
Cases 1 to 4. From this, we can say that if the contractor
does not take the cost estimation accuracy into considera-
tion, he will overestimate the profit from orders, and more-
over he might fail to make a correct decision.

The significant difference in the total expected profit is
caused by the total MH for cost estimation except in Case
0 as shown in Table 4. For instance, the expected profits in
Case 1.A (80 [M MH]), Case 1.B (90 [M MH]), Case 1.C
(100 [M MH]), and Case 1.D (110 [M MH]) are 51.5, 61.3,
69.5, and 76.3 [MM$], respectively. As shown in Table 1,
Cases 1 to 4 differ in the method for setting a risk param-
eter and for allocating the MH for cost estimation to each
order. Based on the above observations, we can say that the
increase of the volume of total MH for cost estimation con-
tributes to the increasing total expected profit regardless of
the value of risk parameter and the method of MH alloca-
tion to each order for cost estimation.

Table 4: Total expected profit of each case [MM$]

Total MH for cost estimation (TMH) [M MH]
80 90 100 110

Case 0
128.5

Case 1 Case 1.A Case 1.B Case 1.C Case 1.D
51.5 61.3 69.5 76.3

Case 2 Case 2.A Case 2.B Case 2.C Case 2.D
52.2 62.2 70.5 77.2

Case 3 Case 3.A Case 3.B Case 3.C Case 3.D
60.7 66.9 72.8 78.2

Case 4 Case 4.A Case 4.B Case 4.C Case 4.D
67.3 72.3 77.1 81.3

5.2.2 Significance of MH allocation method for cost es-
timation

It is found from Table 4 that the total expected profits in
Case 2 are larger than those in Case 1. Similarly, the total
expected profits in Case 4 are larger than those in Case 3.
These results show that the optimal allocation of the MH

for cost estimation improves the total expected profit. In
addition, the point to observe is that the difference in the
total expected profit between Case 3 and Case 4 is larger
than that between Case 1 and Case 2. This demonstrates
that the MH allocation to each order for cost estimation
has a synergistic effect on the adjustment of the bidding
price. Moreover it should be noticed that the difference in
the total expected profit between Case 3.A and Case 4.A is
6.6 [MM$] whereas it is 3.1 [MM$] between Case 3.D and
Case 4.D. That is, the synergistic effect is large when the
MH for cost estimation is limited.

Table 5 shows the MH allocated to each order, the ex-
pected profit, and the deficit risk in Cases 3.A and 4.A. For
instance, more MH is allocated to the orders 1, 2, 4, 5, 7, 8,
10, 11, 13, and 15 in Case 4.A than in Case 3.A. As shown
in Table 5, the orders, where more MH is allocated in Case
4.A by the revised algorithm than in Case 3.A, increase the
expected profit and decrease the deficit risk compared to
those in Case 3.A. In addition, the orders, where less MH
is allocated in Case 4.A, decrease the deficit risk, although
the expected profit is decreased. As the result, the total ex-
pected profit is higher in Case 4.A (67.3 MM$) than in Case
3.A (60.7 MM$), and the deficit risk is lower in Case 4.A
(5.52 MM$) than in Case 3.A (8.63 MM$).

Since the cost estimation accuracy depends on the MH
allocated to the order for cost estimation, the contractor can
expect a higher profit as well as lower deficit risk by as-
signing a larger volume of MH. However, there is usually a
limit to the available MH for cost estimation. Thus, it can
be concluded that a method of MH allocation to each order
for cost estimation is critical for the contractor in maximiz-
ing the total expected profit under the constraint of the total
MH for cost estimation and the deficit risk in EPC projects.

5.2.3 Effectiveness of bidding price adjustment by risk
parameter

As shown in Table 4, there is a significant difference in
the total expected profits between Case 1 and Case 3, and
similarly between Case 2 and Case 4. For example, the
total expected profit in Case 2.A and in Case 4.A are 52.2
and 67.3 [MM$], respectively. These results show that the
bidding price adjustment by risk parameter is effective in
improving the total expected profit from orders regardless
of the method of MH allocation for cost estimation.

It can be seen in Table 6 that the optimal value of risk
parameter decreases according to the increase of the total
MH for cost estimation in Case 3. A larger volume of the
total MH for cost estimation increases the cost estimation
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Table 5: MH allocation and expected profit of each order

(OI : Order id, EP : Expected profit, DR : Deficit risk,
Total MH for cost estimation TMH: 80 [M MH])

Case 3.A Case 4.A
OI MH EP DR MH EP DR

[M MH] [MM$] [MM$] [M MH] [MM$] [MM$]
1 1.54 2.78 0.152 3.14 3.89 0.021
2 1.54 1.07 0.188 2.48 1.61 0.116
3 1.54 0.50 0.151 0.56 0.12 0.090
4 3.08 5.56 0.304 4.96 7.10 0.107
5 3.08 2.14 0.376 4.03 2.73 0.302
6 3.08 1.00 0.302 1.12 0.24 0.179
7 4.62 8.34 0.455 7.44 10.65 0.160
8 4.62 3.21 0.563 6.04 4.10 0.452
9 4.62 1.49 0.453 1.68 0.37 0.269
10 6.16 11.12 0.607 9.92 14.20 0.213
11 6.16 4.29 0.751 8.05 5.46 0.603
12 6.16 1.99 0.604 2.23 0.49 0.359
13 7.70 5.36 0.939 10.66 6.83 0.754
14 7.70 2.49 0.755 2.79 0.61 0.448
15 9.24 6.43 1.127 12.08 8.19 0.905
16 9.24 2.99 0.906 3.35 0.73 0.538

Total 80.0 60.7 8.63 79.9 67.3 5.52

accuracy as shown in Table 2. The higher cost estimation
accuracy reduces volatility of the bidding price. Thus, when
a large volume of the total MH is available, we can certainly
receive an order by setting a risk parameter to relatively
low value, without the risk of suffering a large loss. For
instance, the cost estimation accuracy of order 1 in Case
3.A and in Case 3.D are 8.45% and 6.75% (see Table 2),
and the values of the risk parameter are 1.035 and 1.021,
respectively.

Based on the above observations, it can be said that the
adjustment of the bidding price of each order in considera-
tion of the cost estimation accuracy is effective in increas-
ing the expected profit.

5.2.4 Effect of the deficit risk constraint on the expected
profit

We examine how the deficit risk constraint affects the ex-
pected profit. Fig. 1 depicts the relation of the upper limit
of the expected deficit rpf i and the total expected profit
in Cases 3.A, 3.D, 4A, and 4D. In Fig. 1, the value of
rpf i, which is defined as a percentage of the target profit
STCi · tpri

1, is chosen from 0.25%, 0.5%, 0.75%, 1.0%,
1.25%, 1.5%, 1.75%, 2.0%. As explained in Section 2, the
risk of unexpected loss from the deficit orders should be

Table 6: Optimal value of risk parameter rpi in Case 3
(Order id: 1- 3)

(The total MH for cost estimation TMH of each case
is shown inside the parentheses. [M MH])

Order id Case 3.A Case 3.B Case 3.C Case 3.D
(i) (80) (90) (100) (110)
1 1.035 1.029 1.026 1.021
2 1.028 1.020 1.013 1.007
3 1.034 1.023 1.015 1.007

avoided especially when only a small number of orders can
be accepted.

As shown in Fig.1, although the low upper limit of the
expected deficit decreases the total expected profit, the
expected deficit can be reduced. For example, the to-
tal expected deficit is reduced from 8.65 to 1.37 [MM$]
by changing the upper limit of the deficit order from 2.0
to 0.25 [%] at the expense of the total expected profit of
12.5 [MM$] in Case 3.A. In addition, Fig.1 shows that the
method of MH allocation for cost estimation has significant
influence on the total expected profit under the constraint
of the upper limit of the expected deficit. For example, the
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Fig. 1: Relations between the total expected deficit and the total expected profit.

Table 7: Total expected profits by the revised algorithm
(Case 4) and HBPD algorithm. [MM$]

Total MH for cost estimation (TMH) [M MH]
80 90 100 110

Case 4.A Case 4.B Case 4.C Case 4.D
Revised algorithm 67.3 72.3 77.1 81.3
HBPD algorithm 61.6 65.0 68.9 76.1

total expected profit decreased from 81.3 to 78.5 [MM$]
by reducing the upper limit of the deficit order from 2.0
to 0.25 [%] in Case 4.D; however, the total expected profit
decreased more sharply in Case 3.D, i.e., 78.2 to 67.8.

Bidding for a large-scale project involves a substantial
risk. Our framework developed for EPC projects will cer-
tainly be helpful for any contractor in making a stable profit
under the constraints of the total MH for cost estimation and
the deficit risk of each order.

5.2.5 Performance of the revised algorithm

Table 7 shows the expected profits obtained by the re-
vised algorithm (Case 4) in this paper and those by the
HBPD algorithm under the same problem setting deter-
mined in Section 5.1. As stated in Section 2, the HBPD
algorithm allocates MH for cost estimation to each order
according to the predetermined ranking of orders, and then
adjusts bidding prices. In contrast, the revised algorithm
determines bidding prices by allocating MH for cost esti-
mation and adjusting bidding prices by risk parameters si-

multaneously, without using the predetermined ranking of
orders.

As shown in Table 7, there is a significant difference in
the total expected profits between Case 4 and those obtained
by the HBPD algorithm for all conditions on the total MH
for cost estimation. It can be concluded that the revised
algorithm can perform better than the HBPD algorithm on
the total expected profit from orders.

6. Conclusions

In this paper, we develop an algorithm where bidding
prices are determined so that the total expected profit from
orders is maximized in consideration of the cost estimation
accuracy under the constraint of the total MH for cost es-
timation and the deficit risk of each order. Namely, the
revised algorithm determines bidding prices by allocating
MH for cost estimation and adjusting bidding prices by
risk parameters simultaneously, without using the predeter-
mined ranking of orders that is used in the HBPD algorithm,
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so that the total expected profit from orders is maximized.
The following conclusions can be drawn from the analy-

sis of the numerical examples:

• A method of MH allocation to each order for cost esti-
mation is critical for the contractor in maximizing the
total expected profit under the limited MH for cost es-
timation.

• The bidding price adjustment by risk parameter based
on the cost estimation accuracy is effective in improv-
ing the total expected profit from orders.

• The MH allocation to each order for cost estimation
has a synergistic effect on the bidding price adjust-
ment.

• The revised algorithm is helpful for any contractor in
making a stable profit under the constraints of the to-
tal MH for cost estimation and the deficit risk of each
order.

• The revised algorithm can perform better than the
HBPD algorithm on the total expected profit from or-
ders.

There are several issues that require further research. For
example, the procedure for modifying the MH allocation
and adjusting the bidding price dynamically in response to
each order arrival is required.

Acknowledgements: This work was supported by JSPS KAK-
ENHI Grant Number 25350455.

Appendix

The notations used in mathematical models are as fol-
lows:

σ : Standard deviation of bidding price.
PMH: MH for cost estimation per order.

C: Parameter of the sensitivity of cost estimation accu-
racy to the volume of MH.

TBPi
k: Tentative bidding price of the contractor k for order i.

STCRi
k: Standard project cost of order i in contractor k.

tpri
k: Target profit rate of the contractor k for order i.

rpi: Risk parameter of order i.
STCi: Standard project cost of order i.
RCi

k: Relative cost difference from STCi in contractor k.
pi

k(x
i
k, µ̄ , σ̄): Probability density function of the bidding price

xi
k of the contractor k for order i.

µ̄: Average value of the bidding price.
σ̄ : Standard deviation of the bidding price.

epi
g: Expected profit in one’s own company from order i at

the accuracy level g.

σ i
k: Standard deviation of the bidding price in the contrac-

tor k.

dri
g: Deficit risk in one’s own company from order i at the

accuracy level g.

ai
g: 0-1 integer decision variable for order i at the accuracy

level g.

rpf i: Upper limit of the expected deficit from order i.

PMHi
g: Volume of MH required for estimating the cost of or-

der i with accuracy level g.

TMH: Total MH for cost estimation.

orpi: Optimal value of risk parameter rpi.

oai
g: Optimal assignment of the accuracy level ai

g.

EST i: Estimated cost of order i.

M MH: Thousand man-hours.

MM$: Million US dollars.
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